IN-MIXTURE ANALYSIS OF TRITERPENES

FROM Raphiodon echinus

FÁBIO DE SOUSA MENEZES* AND MARIA AUXILIADORA COELHO KAPLAN

(Received April 28th 2005; Accepted November 2005)

Abstract

The acetone crude extract of Raphiodon echinus aerial parts (Lamiaceae) yielded pure betulinic acid and three mixtures of pentacyclic triterpenes. The mixtures constituents were identified by 13C NMR spectroscopy (decoupled, APT) and confirmed by GC-MS and comparison with previously published data. Betulinic, oleanolic, ursolic, micromeric and siaresinolic acids have been identified in different combinations and proportions.

Key Words: Raphiodon echinus, Lamiaceae, In-Mixture Analysis, Triterpenes

INTRODUCTION

Raphiodon echinus (Nees et Mart.) Schauer belongs to the family Lamiaceae, subfamily Ocimoideae, subtribe Hyptidineae (Bentham and Hooker, 1862-1883). This plant is abundant in the Northeast region of Brazil, mainly in the States of Ceará and Paraíba, where it is known as “betônica” and used for the treatment of cough. By the chemical point of view, R. echinus had not still been studied. As a base to start the chemical study of this species, a literature survey was made to ascertain the chemical composition of the genus Hyptis, the most studied of the subtribe Hyptidineae. The literature survey showed the richness of species belonging to this genus in the production of flavonoids, triterpenoids, α-pyrones and lignans (Pere-da-Miranda, 1995).

1Núcleo de Pesquisas de Produtos Naturais-UFRJ. Centro de Ciências da Saúde, Bloco H, sala H1-017. Rio de Janeiro, RJ, Brasil. CEP=21941-590.
Corresponding Author: Fábio de Sousa Menezes. Departamento de Produtos Naturais e Alimentos, Faculdade de Farmácia-UFRJ. Centro de Ciências da Saúde, Bloco A, sala A2-004. Rio de Janeiro, RJ, Brasil. CEP=21941-590. e-Mail = HYPERLINK “mailto:fsmenezes@pharma.ufrj.br” fsmenezes@pharma.ufrj.br
RESULTS AND DISCUSSION

From chromatography of the acetone crude extract of *R. echinus* aerial parts, four fractions (I, II, III and IV) apparently pure on TLC, showed after analysis by ¹H NMR and ¹³C NMR to be actually mixtures, except for I. The structure of I was characterized as betulinic acid and confirmed by comparison of its spectrometric data with those published for an authentic sample of betulinic acid. Since II, III and IV were characterized as triterpene acid mixtures, a reaction with diazomethane in ether was performed in order to obtain their derived methyl esters. The mixtures of methyl esters were then analysed by GC-MS in the same conditions used for methyl ester of I.

By this way, it was possible to visualize in the chromatogram of II the presence of four compounds with the following retention times: 72.52 min., 73.37 min., 76.01 min. and 78.00 min. Mass spectra obtained for those compounds evidenced the following molecular ions: 470 (RT=72.52), 470 (RT=73.37), 470 (RT=76.01) and 468 (RT=78.00). Mass spectrum for compound with retention time 73.37 min. was very similar to that observed for betulinic acid methyl ester, suggesting this compound as one of the representatives of this mixture. Analysis of the ¹³C NMR spectrum of II confirmed the presence of betulinic acid in this mixture due to the presence of characteristic signals for that substance: δ (ppm) 177.1 (C₂₈); 150.2 (C₂₀); 109.5 (C₂₉) and 76.8 (C₃). In the same spectrum it was possible to see three other characteristic group of signals belonging to three other triterpene skeletons: oleanolic acid δ (ppm) 178.5 (C₂₈); 143.7 (C₁₃), 121.5 (C₁₂) and 76.8 (C₃); ursolic acid δ (ppm) 178.2 (C₂₉); 138.1 (C₁₃); 124.5 (C₁₂) and 76.8 (C₃); and micromeric acid δ (ppm) 177.6 (C₂₈); 152.8 (C₂₉); 137.8 (C₁₃); 125.1 (C₁₂); 105.0 (C₃₀) and 76.8 (C₃). Comparison of these data with those of the literature (Siddiqui et al., 1988; Maillard et al., 1992; Seo et al., 1975 and Kojima et al., 1987) confirmed this proposal. The multiplicity of carbon atoms for each compound was obtained by the use of APT technique. The ¹H NMR spectrum of II presented very characteristic signals: δ (ppm) 5.25 (broad singlet) regarding to the H₁₂ of ursolic, oleanolic and micromeric acids, 4.55 and 4.68 regarding to the hydrogens 29 of betulinic acid, 3.00 (dd) regarding to the carbinol hydrogens belonging to the four triterpenes in the mixture, 2.75 (dd) regarding to the H₁₈ of oleanolic acid, 2.15 (dd) regarding to the H₁₈ of betulinic acid, 2.10 (d) regarding to the H₁₈ of ursolic and micromeric acids, 1.62 (s) regarding to the hydrogens belonging to the methyl group of the isopropylene moiety of betulinic acid, besides the other signals belonging to the methyl hydrogens of the four triterpenes in the mixture. All the spectroscopic data made possible to characterize the compound with RT=72.52 as oleanolic acid methyl ester, the compound with RT=76.01 as ursolic acid methyl ester and the compound with RT=78.00 as micromeric acid methyl ester.

Gas chromatogram of III showed the presence of three compounds with the following retention times: 71.98 min., 75.67 min. and 77.90 min. Mass spectra obtained for those compounds evidenced the following molecular ions: 470 (RT=71.98), 470 (RT=75.67) and 468 (RT=77.90). Mass spectrum for these compounds are in agreement with those observed for the methyl esters of oleanolic, ursolic and micromeric acids in II. In fact, analysis of the ¹³C NMR spectrum of III clearly showed the presence of oleanolic, ursolic and micromeric acids. Comparison of these data with those of the literature (Maillard et al., 1992; Seo et al., 1975 and Kojima et al., 1987) confirmed this proposal. The multiplicity of carbon atoms for each compound was also obtained by the use of APT technique. The ¹H NMR spectrum of III presented very characteristic signals: δ (ppm) 5.25 (broad singlet) regarding to the H₁₂ of ursolic, oleanolic and micromeric acids, 4.55 and 4.68 regarding to the hy-
hydrogens 30 of micromeric acid, 3.00 (broad signal) regarding to the carbinol hydrogens belonging to the three triterpenes in the mixture, 2.75 (dd) regarding to the H$_{18}$ of oleanolic acid, 2.10 (dd) regarding to the H$_{18}$ of ursolic and micromeric acids, besides the other signals belonging to the methyl hydrogens of the three triterpenes in the mixture. All the spectroscopic data made possible to characterize the compound with RT=71.98 as oleanolic acid methyl ester, the compound with RT=75.67 as ursolic acid methyl ester and the compound with RT=77.90 as micromeric acid methyl ester.

Gas chromatogram of IV showed the presence of two compounds with the following retention times: 71.98 min., 75.67 min. and 77.90 min. Mass spectra obtained for those compounds evidenced the following molecular ions: 470 (RT=71.98), 470 (RT=75.67) and 468 (RT=77.90). Mass spectrum for these compounds are in agreement with those observed for the methyl esters of oleanolic, ursolic and micromeric acids in II. In fact, analysis of the 13C NMR spectrum of IV clearly showed the presence of oleanolic, ursolic and micromeric acids. Comparison of these data with those of the literature (Maillard et al., 1992; Seo et al., 1975 and Inada et al., 1987) confirmed this proposal. The multiplicity of carbon atoms for each compound was also obtained by the use of APT technique. The 1H NMR spectrum of IV presented very characteristic signals: δ (ppm) 5.20 (m) regarding to the H$_{12}$ of ursolic and siaresinolic acids, 3.45 regarding to the H$_{20}$ of siaresinolic acid, 3.05 (tl) regarding to the carbinol hydrogens belonging to the two triterpenes in the mixture, 2.75 (d) regarding to the H$_{18}$ of siaresinolic acid, 2.15 (d) regarding to the H$_{18}$ of ursolic acid, besides the other signals (0.7-1.1) belonging to the methyl hydrogens of the two triterpenes in the mixture.

In-Mixture analysis is an important methodology for natural products evaluation leading not only to economy of operation time but very often it can preserve the scientist to use modern (2D) techniques to solve very known structures. In the present work, the richness in triterpene production by R. echinatus proved to be of very important appliance.
the use of in-mixture analyses dispensing even more expensive techniques and lack of time to ascertain known structures, mainly triterpenes, which are very easy to identify the skeletons by the assignment of double bond carbon atoms avoiding the use of 2D techniques like HMBC, HMQC and HETCOR for these molecules.

METHODOLOGY

Plant Material- Aerial parts of R. echinus were collected by Prof. Dra. Maria de Fátima Agra, Laboratório de Tecnologia Farmacêutica (UFPB), on October 17, 1994, in the district of Santa Rita, João Pessoa, PB, Brazil. A representative sample was deposited in the New York Botanical Garden Herbarium (voucher number = 1590). The plant material was dried at 50°C and further ground.

Extract Preparation- Dried and ground aerial parts (630g) of R. echinus were extracted by cold percolation with acetone. The acetone extract was concentrated under reduced pressure yielding a total of 11g.

Chemical Study of Acetone Extract- The acetone extract of R. echinus aerial parts was chromatographed over a silica gel column (internal diameter of 70mm, length of 80cm, and total silica gel 250g) eluted with hexane, gradients of hexane and ethyl acetate, ethyl acetate, gradients of ethyl acetate and methanol, and methanol, yielding 25 fractions. Fractions 8-9, eluted with hexane/ethyl acetate (8:2) was filtered in the presence of active charcoal, giving after evaporation of the solvent 100.9mg of I, identified as betulinic acid.

I- Betulinic acid- m.p.=250-255°C. 1H NMR (200 MHz, DMSO-D$_6$, TMS): δ 0.66; 0.77; 0.90 and 0.96 (s, 5 X 3H; H$_{23}$, H$_{24}$, H$_{25}$, H$_{26}$ and H$_{27}$), 1.62 (s, 3H, H$_{30}$), 2.97 (m, 1H, H$_3$), 4.55 (s, 1H, H$_{29a}$), 4.68 (s, 1H, H$_{29b}$), 12.0 (s, 1H, acid H). 13C NMR (50 MHz, DMSO-D$_6$, TMS): δ 14.3 (C$_{27}$), 15.7 (C$_4$), 15.8 (C$_{25}$), 15.9 (C$_{26}$), 18.0 (C$_6$), 19.0 (C$_{30}$), 20.5 (C$_{11}$), 25.1 (C$_{12}$), 27.2 (C$_2$), 28.0 (C$_{23}$), 29.1 (C$_{21}$), 30.1 (C$_{15}$), 31.7 (C$_{16}$), 34.0 (C$_7$), 36.7 (C$_{22}$), 37.6 (C$_{10}$), 38.3 (C$_{13}$), 38.5 (C$_8$), 38.6 (C$_5$), 40.3 (C$_6$), 41.9 (C$_{14}$), 46.6 (C$_{18}$), 48.5 (C$_{19}$), 49.9 (C$_9$), 54.9 (C$_3$), 55.4 (C$_{17}$), 76.8 (C$_9$), 109.5 (C$_{29}$), 150.2 (C$_{20}$), 177.2 (C$_{28}$). GC [betulinic acid methyl ester prepared with diazomethane (DB-1 30m X 0.20mm, helium as carrier gas and temperature programming from 50 to 270°C - 4°C min$^{-1}$, isotherm for 25 min. at 270°C)] RT=73.77 min. MS-EI m/z (%): 470 [M$^+$] (3.3), 452 (1.1), 411 (5.5), 262 (33.3), 233 (7.7), 207 (35.5), 189 (66.7), 175 (26.6), 119 (41.1), 107 (44.4), 95 (50.0), 69 (65.5), 55 (93.3), 43 (100).

Fractions 10, 11-13 and 16-20, eluted respectively with hexane/ethyl acetate (7:3), hexane/ethyl acetate (6:4) and ethyl acetate/methanol (9:1), were filtered in the presence of active charcoal, to give respectively II (72.0 mg), III (76.4 mg) and IV (150.1 mg). 1H NMR and 13C NMR analysis showed that II, III and IV were actually triterpene mixtures containing: II – oleanolic acid (41%), ursolic acid (24%), betulinic acid (29%) and micromeric acid (6%); III – oleanolic acid (29%), ursolic acid (57%) and micromeric acid (14%); and IV – ursolic acid (67%) and siaresinolic acid (33%). The percentage of each triterpene in the mixtures were estimated by the amplitude of double bond carbon signals in the 13C NMR triterpene mixture spectra.

GC-MS- Mixtures of triterpene acids obtained from the acetone extract of R. echinus (II, III and IV) as well as pure betulinic acid (I) were transformed in the corresponding methyl esters by reaction with diazomethane in ether. The methyl ester mixtures were analysed by gas chromatography coupled to mass spectrometry using DB-1 column (30m X 0.20mm) helium as carrier gas and temperature programming from 50 to 270°C - 4°C min$^{-1}$, isotherm for 25 min. at 270°C.

ACKNOWLEDGEMENTS

Authors are grateful to CAPES and CNPq for fellowships and to FUJB, FAPERJ, CNPq/PRONEX for financial support.
REFERENCES

